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Self-consistent expansion for the molecular beam epitaxy equation
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Motivated by a controversy over the correct results derived from the dynamic renormalization group~DRG!
analysis of the nonlinear molecular beam epitaxy~MBE! equation, a self-consistent expansion for the nonlinear
MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form
D(rW2rW8,t2t8)52D0urW2rW8u2r2dd(t2t8). I find a lower critical dimensiondc(r)5412r, above which the
linear MBE solution appears. Below the lower critical dimension ar-dependent strong-coupling solution is
found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE,
using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime
of the Kardar-Parisi-Zhang system~for d.1!, where DRG failed to do so.
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The field of disorderly surface growth has received mu
attention during the last two decades. Special effort has b
focused on relating discrete microscopic growth models w
their corresponding continuum field theories@1#. The first
continuum equation used to study the growth of interfaces
particle deposition was the Edwards-Wilkinson model~EW!
@2# that describes the dynamics of the interface by a no
driven diffusion equation. This model actually describes
microscopic process known as random deposition~RD! with
surface relaxation, and together they form a distinct univ
sality class in growth phenomena. However, an extensio
this model was needed because of the nonlinear charact
many deposition processes, such as ballistic deposition~BD!,
solid-on-solid deposition~SOS! and Eden growth. The firs
extension of the EW equation to include nonlinear terms w
proposed by Kardar, Parisi, and Zhang~KPZ! @3#, who sug-
gested the addition of a nonlinear term proportional to
square of the height gradient. The success of the KPZ e
tion in describing deposition phenomena motivated many
searchers to develop a continuum growth model relevant
the technologically important molecular beam epita
~MBE! process@4–10#. The physical mechanism that distin
guishes MBE from previously discussed growth processe
the surface diffusion of the deposited particles. It is w
known that in the temperature range of MBE growth, deso
tion of atoms and formation of overhangs and bulk defect
negligibly small. As a consequence the continuum model
scribing this process must conserve the number of parti
on the interface. The introduction of conservation laws in
the growth equation forms more universality classes in s
face phenomena. One of these classes is known as the L
MBE equation @or the Mullins-Herring ~MH! universality
class@11## and is described, in Fourier components, by
equation,

]hq

]t
52Kq4hq1hq~ t !, ~1!

wherehq is the Fourier component of the height measu
relative to its spatial average, andhq(t) is the fluctuation of
1063-651X/2002/65~3!/032103~4!/$20.00 65 0321
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the rate of deposition, which is assumed to have a Gaus
distribution with zero mean and generally satisfies

^hq~ t !hq8~ t8!&52D0q22rdq,2q8d~ t2t8!, ~2!

whereD0 is a constant,r is a parameter that can be eith
positive or negative~actually in the case of conserved nois
which is of great interest in the MBE system,r521, see
Ref. @12#!, anddq,2q8 is just the Kronecker symbol.

However, just like in the nonconservative case, a non
ear extension was needed to describe the richness of
MBE processes. Various symmetry arguments, origina
suggested by Villain@4,13# as well as some physical argu
ments@1# indicate that the relevant MBE growth equation

]hq

]t
52Kq4hq2

g

AQ
(
t,m

q2~ lW•mW !dq,l 1mhlhm1hq , ~3!

where g is the coupling constant,V is the volume of the
system, to be taken eventually to infinity, andhq is the noise
term. This equation, which is by no means trivial, has be
analyzed later using the dynamical renormalization gro
method~DRG! @6#. The theoretical predictions for the critica
exponents made, using this method, agreed quite well w
results of numerical integration of Eq.~3! as well as with
results of simulations of discrete models belonging to
MBE universality class~see for example@1,11#, and refer-
ences therein!. Therefore, these results became widely a
cepted in the community of surface-growth physicists.

However, in recent years some researchers raised a
the question of the validity of the DRG theoretical pred
tions. One line of criticism was taken by Das Sarma@11#
who pointed out that the DRG results are derived from
leading order« expansion of a one-loop renormalizatio
analysis, where«542d ~d being the substrate dimension!.
He stressed the point that for the relevant dimensions
cussed in the literature, i.e.,d51 or 2, the expansion param
eter«53 or 2 is not small, therefore, one may legitimate
question the validity of the calculated exponents.

A somewhat different line of criticism, however mor
radical and explicit was taken by Janssen@12# who was able
©2002 The American Physical Society03-1
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BRIEF REPORTS PHYSICAL REVIEW E 65 032103
to show that a two-loop calculation gives nontrivial~al-
though small! corrections to the critical exponents predict
by one-loop DRG calculation~more specificallya two-loop
5aone-loop2d, wherea is the roughness exponent andd is a
small correction!. By doing so he actually made a substant
contribution in refuting the underlying assumption that t
coupling constant renormalizes trivially. This assumpti
was very essential to the one-loop DRG calculations don
far. Janssen was also able to show explicitly the reason
this discrepancy, which has to do with a mathematically
defined generalization of so called the Galilean invaria
~actually tilt invariance! of the KPZ equation@3# suggested
by Sun, Guo, and Grant@14#. As mentioned above, Jansse
found that the correction to the scaling exponents was v
small, and he suspected that the smallness of the corre
was related to many, but incomplete, cancellations betw
diagrams as well as within internal momentum integrals.
that basis he speculated that a mode-coupling approach
useful approach for this problem.

In this paper I apply a method developed by Schwartz
Edwards @15–17# ~also known as the Self-Consisten
Expansion~SCE! approach!. This method has been prev
ously applied to the KPZ equation. The method gained m
credit in being able to give a sensible prediction for the K
critical exponents in the strong-coupling phase, while DR
was not able to give any prediction for that phase ford.1
~only the weak-coupling solution was addressed!. It is worth
mentioning that this method is closely related to the mo
coupling approaches, in the sense that similar~but not iden-
tical! equations are obtained, while the underlying derivat
is different. It is, therefore, hoped that this paper will help
decide this unresolved situation, thus facing the challenge
up by Janssen@12#. I obtain the original results of the one
loop calculation@6,8#, thus corroborating these results, wh
avoiding the mathematical pathologies faced by the D
method. This situation where DRG results obtained from d
ferent orders in« give different conceptual scenarios~i.e.,
trivial vs nontrivial renormalization of the coupling constan!
calls for a resolution.

Another remarkable advantage of the SCE method is
minor changes needed in order to generalize the result
uncorrelated noise to include noise correlated in space.
above implies a second important motivation for this pap
namely, a demonstration of the robustness of the S
method as well as its mathematical coherence and con
tency.

The SCE method is based on going over from the Fou
transform of the MBE equation in Langevin form to
Fokker-Planck form and constructing a self-consistent
pansion of the distribution of the field concerned. The exp
sion is formulated in terms offq andvq , wherefq is the
two-point function in momentum space, defined byfq
5^hqh2q&s ~the subscriptS denotes steady state averagin!,
and vq is the characteristic frequency associated withhq ,
defined by

vq
21[

E
0

`

^hq~ t !h2q~0!& dt

fq
.
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I expect that for small enoughq, fq , andvq are power
laws in q,

fq5Aq2G and vq5Bqm . ~4!

Since dynamic surface growth is a remarkably multidis
plinary field, there are almost as many notations as there
workers in the field. Therefore I give a brief translation
our notations to those most frequently used,

m5z, a5~G2d!/2, and b5a/z5~G2d!/2m.
~5!

The method produces, to second order in this expans
two nonlinear coupled integral equations infq andvq , that
can be solved exactly in the asymptotic smallq limit to yield
the required scaling exponents governing the steady s
behavior and the time evolution.

I begin with writing the Fokker-Planck form of the MBE
equation@Eq. ~3!#

]P

]t
5(

q

]

]hq
FD0q

]

]h2q
1Kqhq1(

l ,m
MqlmhlhmGP, ~6!

where Kq5Kq4, D0q5q22r, and Mqlm5(g/
AV)q2( lW•mW )dq,l 1m .

A self-consistent expansion for such an equation was
rived in the past~Refs. @15–17#!. The main idea is to write
the Fokker-Planck equation]P/]t5OP in the form ]P/]t
5@O01O11O2#P, whereO0 is to be considered zero orde
in some parameterl, O1 is first order, andO2 is second
order. The evolution operatorO0 is chosen to have a simpl
form

O05(
q

]

]hq
FDq

]

]h2q
1vqhqG ,

whereDq /vq5fq . Note that at presentfq andvq are not
known. I obtain next an equation for the two-point functio
The expansion has the formfq5fq1cq$fp ,vp%, because
the lowest order in the expansion already yields the unkno
fq . In the same way an expansion forvq is also obtained in
the formvq5vq1dq$fp ,vp%. Now, the two-point function
and the characteristic frequency are thus determined by
two coupled equations,

cq$fp ,vp%50 and dq$fp ,vp%50. ~7!

Working to second order in the expansion, one gets the
coupled integral equations,

D0q2Kqfq12(
lm

MqlmMqlmf lfm

vq1v l1vm

22(
l ,m

MqlmMlmqfmfq

vq1v l1vm
22(

l ,m

MqlmMmlqf lfq

vq1v l1vm
50,

~8!
3-2
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Kq2vq22(
l ,m

Mqlm

Mlmqfm1Mmlqf l

v l1vm
50, ~9!

where in deriving the last equation I have used the Herr
consistency equation@18#. In fact Herring’s definition ofvq
is one of many possibilities, each leading to a different c
sistency equation. But it can be shown, as previously don
Ref. @16#, that this does not affect the exponents~universal-
ity!.

In the following I will treat the Eqs.~8! and ~9! for our
specific problem of interest~i.e., use the specific form ofKq
andMqlm for MBE!. These equations can be rewritten as

D0q22r2Kq4fq1I 1~q!fq1I 2~q!50, ~10!

vq2Kq41J~q!50, ~11!

where the functionsI 1(q), I 2(q), andJ(q) are given by

I 1~q!52
2g2

~2p!d E ddl
q2@ lW•~qW 2 lW !#

vq1v l1vq2 l
@ uqW 2 lWu2 lW•qW f l

1 l 2~qW 2 lW !•qW fq2 l #, ~12!

I 2~q!5
2g2

~2p!d E ddl
q4@ lW•~qW 2 lW !#2

vq1v l1vq2 l
f lfq2 l , ~13!

J~q!52
2g2

~2p!d E ddl
q2@ lW•~qW 2 lW !#

v l1vq2 l
@ uqW 2 lWu2 lW•qW f l

1 l 2~qW 2 lW !•qW fq2 l #. ~14!

As previously stated@Eq. ~4!# I expect that for small
enoughq, fq , andvq are power laws inq, for smallq ~i.e.,
fq5Aq2G andvq5Bqm!. I am interested in Eqs.~10! and
~11! for smallq’s only. But, in order to achieve that one mu
consider the contribution of the largelW integration on the
small q behavior of the whole integrals. So I break up t
integralsI i(q) and J(q) into the sum of two contributions
I i

.(q), J.(q), andI i
,(q), J,(q), corresponding to domain

of lW integration, with high and low momentum, respective
I expandI i

.(q) andJ.(q) for smallq’s and obtain the lead
ing small-q behavior of the integrals, and after retaining on
the leading terms, Eqs.~10! and ~11! reduce now to

D0q22r1A2q42Kq4fq1A1q6fq1I 1
,~q!fq1I 2

,~q!50,
~15!

vq2Kq41J,~q!1A3q650. ~16!

At the mere price of renormalizing some constants in b
equations, I am left with the integralsI 1

,(q), I 2
,(q), and

J,(q) that can be calculated explicitly for smallq’s since for
small u lWu ’ s the power law form forf l andv l ~or fq2 l and
vq2 l! can be used@Eq. ~4!#. In addition, the small-q depen-
dence of each of the integrals naturally depends on the
vergence of the integrals without cutoff. So, to leading or
in q,
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I 1
,~q!,J,~q!}H q6 for d142G2m.0

qd182G2m for d142G2m,0,
~17!

I 2
,~q!}H q4 for d1422G2m.0

qd1822G2m for d1422G2m,0.
~18!

Going through the steps of a detailed analysis~like in the
appendix of Ref.@16#! I find that abovedc5412r a weak-
coupling solution, described by the exponentsG5412r and
m54, is obtained. The lower critical dimension of the no
linear MBE equation is thus 412r.

A strong-coupling solution can be obtained provided theG
andm obeyd142G2m,0 andd1422G2m,0. In that
case Eqs.~15! and ~16! take the form

D0q22r1A2q42KAq42G1AA1q62G

1
2l2

~2p!d

A2

B
qd1822G2mF~G,m!50, ~19!

Bqm2Kq41A3q61
2l2

~2p!d

A

B
qd182G2mG~G,m!50,

~20!

whereF(G,m) is given by

F~G,m!52E ddt
tW•~ ê2 tW !

tm1uê2 tWum11

3@ uê2 tWu2~ tW•ê!t2G1t2~ ê2 tW !•êuê2 tWu2G#

1E ddt
@ tW•~ ê2 tW !#2

tm1uê2 tWum11
t2Guê2 tWu2G ~21!

andG(G,m) is given by

G~G,m!52E ddt
tW•~ ê2 tW !

tm1uê2 tWum
@ uê2 tWu2~ tW•ê!t2G

1t2~ ê2 tW !•êuê2 tWu2G#. ~22!

From the conditions given above for a strong-coupli
solution I find d182G2m,4. Therefore, the last term in
Eq. ~20! is dominant over the second term. Two possibiliti
seem to arise now. Either the last term dominates the
term in Eq.~20!, which impliesG(G,m)50, or these terms
are proportional to the same power ofq, which implies the
scaling relationd182G22m50. The first possibility re-
quires d182G22m,0, which is inconsistent with the
3-3
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BRIEF REPORTS PHYSICAL REVIEW E 65 032103
whole idea of the expansion. The point is that higher or
corrections have additional powers ofqd182G22m so that in
our case the requirementd182G22m,0 means that
higher order terms are more violent than lower order o
~for small q’s!. Such a situation either implies inconsisten
of the expansion, or calls for summing up the whole serie
order to get a meaningful result. I assume that the expan
is consistent so that I am left with the second possibility, i
d182G22m50. It is interesting to mention here that Ja
ssen’s result is also consistent with the assumption that
requirementd182G22m,0 cannot be fulfilled.

As for Eq.~19!, I getd1822G2m,42G, meaning that
the third term is negligible compared to the last. Here ag
I am faced with two possibilities. Either the first term and t
last term are proportional to the same power ofq, resulting in
d1822G2m522r, or the last term is dominant over th
first term, in which cased1822G2m,22r, and
F(G,m)50. A careful numerical calculation shows th
F(G,m)Þ0 for d<4, so that the second possibility is rule
out. Therefore, I am left with the first possibility, namel
with d1822G2m522r.

I am led to the conclusion that the strong-coupling so
tion is G5(d14r18)/3 andm5(d22r18)/3. Taking into
account the condition for a strong-coupling solution giv
above, I find that such a solution is valid only ford,dc

5412r. Ford.dc the exponents describing the system a
the same as those of the linear MBE equation, i.e.,G5d and
m54. It should be mentioned that ther-dependent strong
coupling solutions exist as long asr>(d24)/2 ~for lower
values ofr we are actually always below the critical dime
sion, and the critical exponents are consequently alwayG
5d and m54!. The translation of these results to the fr
quently used notation reads
e

tt
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z5H ~d22r18!/3, d,412r

4, d.412r,
~23!

a5H ~2r142d!/3, d,412r

0, d.412r.
~24!

The final conclusion is that the second order se
consistent expansion yields results that corroborate the
sults of one-loop DRG@6,8#. As mentioned at the beginnin
of the paper, the mode-coupling approach give similar eq
tions to those of SCE to second order—although a differ
derivation and analysis~i.e., summation of the perturbatio
series while neglecting vertex renormalization vs a pertur
tion theory for the Fokker-Planck form!. On that basis, I
expect the same results from a mode-coupling appro
when applied to this problem.

To evaluate these results two facts have to be taken
account. The first is that the SCE approach does not rely
the symmetry argument@14# that its possible weakness wa
pointed out by Janssen. The second is that the SCE is kn
in other cases~i.e., KPZ, see Refs.@15–17#! to yield results
that deviate from the results of the one-loop DRG and ag
much better with simulations. This suggests that the one-l
DRG results may be exact for the case of MBE. On the ot
hand, attempts to verify Janssen’s results via numerical si
lations indeed found such corrections@19,20#. However, the
corrections were systematically much larger than those
dicted by Janssen himself. For example, ford51 the devia-
tion d from the one-loop result differs from Janssen’s res
by an order of magnitude~correction of d50.0025 vsd
50.02!. Since d50.0025 is closer tod50 than to d
50.02, this suggests that the deviation found in the num
cal simulations might be related to some other facto
Clearly further investigation is needed to decide this intere
ing issue.
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