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Self-consistent expansion for the molecular beam epitaxy equation

Eytan Katzav
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University,
Ramat Aviv, Tel Aviv 69978, Israel
(Received 26 July 2001; published 27 February 2002

Motivated by a controversy over the correct results derived from the dynamic renormalization DRGp
analysis of the nonlinear molecular beam epit#BE) equation, a self-consistent expansion for the nonlinear
MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form
D(F—r"t—t')=2Dy|F—F'|?*"95(t—t). | find a lower critical dimensioml,(p)=4+ 2p, above which the
linear MBE solution appears. Below the lower critical dimensiop-@ependent strong-coupling solution is
found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE,
using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime
of the Kardar-Parisi-Zhang syste(for d>1), where DRG failed to do so.
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The field of disorderly surface growth has received muchthe rate of deposition, which is assumed to have a Gaussian
attention during the last two decades. Special effort has bedtistribution with zero mean and generally satisfies
focused on relating discrete microscopic growth models with
their corresponding continuum field theorigk]. The first (nq(t) 7/ (1)) =2Do0q ™8, o S(t—t'), 2
continuum equation used to study the growth of interfaces by ) i i
particle deposition was the Edwards-Wilkinson mogily) ~ WhereDo is a constantp is a parameter that can be either
[2] that describes the dynamics of the interface by a nois@os't'V.e or negatlv-eéactually in the case of conserved noise,
driven diffusion equation. This model actually describes theéVhich is of great interest in the MBE system:=—1, see
microscopic process known as random deposit®p) with ~ Ref.[12]), and 5, _q: is just the Kronecker symbol. _
surface relaxation, and together they form a distinct univer- However, just like in the nonconservative case, a nonlin-
sality class in growth phenomena. However, an extension t§& extension was needed to describe the richness of the
this model was needed because of the nonlinear character MBE processes. Various symmetry arguments, originally
many deposition processes, such as ballistic depogiibn, ~ suggested by Villairi4,13] as well as some physical argu-
solid-on-solid depositioiSOS and Eden growth. The first ments[1] indicate that the relevant MBE growth equation is
extension of the EW equation to include nonlinear terms was h
proposed by Kardar, Parisi, and ZhafiPZ2) [3], who sug- MNg 4 9 200
gested the addition of a nonlinear term proportional to the gt Ka“hq \/62,1 a°(1-m) 3 1+ mMm * 77q, (3)
square of the height gradient. The success of the KPZ equa-
tion in describing deposition phenomena motivated many rewhere g is the coupling constant) is the volume of the
searchers to develop a continuum growth model relevant fogystem, to be taken eventually to infinity, ang is the noise
the technologically important molecular beam epitaxyterm. This equation, which is by no means trivial, has been
(MBE) procesg§4-10]. The physical mechanism that distin- analyzed later using the dynamical renormalization group
guishes MBE from previously discussed growth processes ifethod(DRG) [6]. The theoretical predictions for the critical
the surface diffusion of the deposited particles. It is wellexponents made, using this method, agreed quite well with
known that in the temperature range of MBE growth, desorpresults of numerical integration of E¢3) as well as with
tion of atoms and formation of overhangs and bulk defects isesults of simulations of discrete models belonging to the
negligibly small. As a consequence the continuum model denMBE universality clasgsee for exampl¢1,11], and refer-
scribing this process must conserve the number of particlesnces therein Therefore, these results became widely ac-
on the interface. The introduction of conservation laws intocepted in the community of surface-growth physicists.
the growth equation forms more universality classes in sur- However, in recent years some researchers raised again
face phenomena. One of these classes is known as the Line@e question of the validity of the DRG theoretical predic-
MBE equation[or the Mullins-Herring(MH) universality  tions. One line of criticism was taken by Das Sarfi4]
class[11]] and is described, in Fourier components, by thewho pointed out that the DRG results are derived from a

equation, leading ordere expansion of a one-loop renormalization
analysis, wheree=4—d (d being the substrate dimensjon
dhq He stressed the point that for the relevant dimensions dis-
e Kq4hq+ 74(1), (1) cussed in the literature, i.e&l=1 or 2, the expansion param-

etere =3 or 2 is not small, therefore, one may legitimately
question the validity of the calculated exponents.
whereh, is the Fourier component of the height measured A somewhat different line of criticism, however more
relative to its spatial average, ang(t) is the fluctuation of  radical and explicit was taken by Jans$&@] who was able

1063-651X/2002/663)/0321034)/$20.00 65032103-1 ©2002 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW E 65 032103

to show that a two-loop calculation gives nontrivigl- I expect that for small enoughy, ¢4, andw, are power
though small corrections to the critical exponents predictedlaws in g,

by one-loop DRG calculatiorimore specifically ayo.j00p

= one-loop~ 0, Wherea is the roughness exponent adds a q§q=Aq*r and w,=Bg*. (4)
small correctioin By doing so he actually made a substantial

contribution in refuting the underlying assumption that thesince dynamic surface growth is a remarkably multidisci-
coupling constant renormalizes trivially. This assumptionpjinary field, there are almost as many notations as there are

was very essential to the one-loop DRG calculations done s@orkers in the field. Therefore | give a brief translation of
far. Janssen was also able to show explicitly the reason fasyr notations to those most frequently used,

this discrepancy, which has to do with a mathematically ill

defined generalization of so called the Galilean invariance =z o=(I'-d)/2, and B=al/z=('—d)/2u.
(actually tilt invariancg of the KPZ equation3] suggested (5)
by Sun, Guo, and Graifl4]. As mentioned above, Janssen

found that the correction to the scaling exponents was very The method produces, to second order in this expansion,
small, and he suspected that the smallness of the correctiafo nonlinear coupled integral equationsdl and wg, that
was related to many, but incomplete, cancellations betweegan be solved exactly in the asymptotic snuglimit to yield
diagrams as well as within internal momentum integrals. Orthe required scaling exponents governing the steady state
that basis he speculated that a mode-coupling approach ispghavior and the time evolution.
useful approach for this problem. | begin with writing the Fokker-Planck form of the MBE
In this paper | apply a method developed by Schwartz anéquation[Eq. (3)]

Edwards [15-17] (also known as the Self-Consistent-
Expansion(SCE) approach This method has been previ- IP J d
ously applied to the KPZ equation. The method gained much EZE | Poagp—+ Kghg+ 2 Mgimhihm(P, (6)
credit in being able to give a sensible prediction for the KPZ a q 4 m
critical exponents in the strong-coupling phase, while DRG _
was not able to give any prediction for that phasedorl ~ WNere Kq=Ka',  Dog=q %, and Mqm=(g/
(only the weak-coupling solution was addressétis worth ~ VQ)A*(1-) 84 m- _ _
mentioning that this method is closely related to the mode- A self-consistent expansion for such an equation was de-
Coup”ng approaches] in the sense that S|n(m not iden- rived in the paS(RefS[l5—1ﬂ) The main idea is to write
tical) equations are obtained, while the underlying derivationthe Fokker-Planck equatiofiP/dt=0OP in the form P/t
is different. It is, therefore, hoped that this paper will help to =[O0+ O3+ 03]P, whereOj is to be considered zero order
decide this unresolved situation, thus facing the challenge s#t some parametex, O, is first order, andO, is second
up by Janssefil2]. | obtain the original results of the one- order. The evolution operat®, is chosen to have a simple
loop calculatior{6,8], thus corroborating these results, while form
avoiding the mathematical pathologies faced by the DRG
method. This situation where DRG results obtained from dif- 0= 9 b 9
ferent orders ine give different conceptual scenaridse., 0~ 7 ohg qahfq
trivial vs nontrivial renormalization of the coupling constant
calls for a resolution. . whereD,/w,= ¢,. Note that at presenp, and w, are not

~Another remarkable advantage of the SCE method is thgnown. | obtain next an equation for the two-point function.
minor changes needed in order to generalize the result with,o ox
uncorrelated noise to include noise correlated in space. Thge |ow
above implies a seconq important motivation for this paper o In the same way an expansion ff is also obtained in
namely, a demonstration of the robustness of the SC

h I as i h al coh ‘the formwy=wq+dql ¢y, @,}. Now, the two-point function
gﬁzy()d as well as its mathematical coherence and consip the characteristic frequency are thus determined by the

two coupled equations,
The SCE method is based on going over from the Fourier P .

transform of the MBE equation in Langevin form to a
Fokker-Planck form and constructing a self-consistent ex-
pansion of the d'Str.'bUt'on of the field concerned. The expanWorking to second order in the expansion, one gets the two
sion is formulated in terms of, and w,, Where ¢, is the . .

. o q q " coupled integral equations,
two-point function in momentum space, defined Iy
=(hgh_g)s (the subscrip6 denotes steady state averaging

+wqh

Cqldp,wpt=0 and dq{ép,,w,}=0. (7)

and wq is the characteristic frequency associated with Dog— Kqdbgt+ 2> w
defined by m  ogtotoy
“ M ImMImq¢m¢q MquMmIq¢I¢q
he(t)h_4(0)) dt ~2 . -2 =0,
. f0< g(Dh—q( ) ;n wqt o+ on % wqt o+ on
w = .
K ¢q 8
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6 for

d+8-TI'—pun for

d+4-T—-u>0
d+4—-T'—u<0,
17

g
|1<(Q),J<(Q)°C‘ q

where in deriving the last equation | have used the Herring

consistency equatiofi8]. In fact Herring’s definition ofw,,

is one of many possibilities, each leading to a different con-

sistency equation. But it can be shown, as previously done i
Ref.[16], that this does not affect the exponefusiversal-
ity).

In the following | will treat the Eqs(8) and (9) for our
specific problem of interest.e., use the specific form d&f,
andM g, for MBE). These equations can be rewritten as

Dod 2= Ka*¢q+11(q) g+ 12(a) =0,

wq=Kg*+3(a) =0,

(10
(11)

where the function$,(q), 1,(q), andJ(q) are given by

292 9l (G-n1 - -
|1(Q):_(2ﬂ_)dfdd wq+w|+wq,|[|q_l|2|'q¢'
+12(G=1)- dpg 1], (12

292 IRCEINE
)= s | ddl%mﬁq—n 13
2g* o’-@-DI - oo
3= e | AT g T
+12(G=1)-Gebg 1. (14)

As previously statedEq. (4)] | expect that for small
enougha, ¢4, andw, are power laws i, for smallq (i.e.,
(bq=Aq‘F and wq=Bg"). | am interested in Eq410) and
(12) for smallg's only. But, in order to achieve that one must
consider the contribution of the Iargfeintegration on the

small q behavior of the whole integrals. So | break up the

integralsl;(q) andJ(q) into the sum of two contributions
17(q), 37(q), andl;~(q), J=(q), corresponding to domains
of I integration, with high and low momentum, respectively.
| expandl;”(q) andJ~(q) for smallg's and obtain the lead-
ing smallg behavior of the integrals, and after retaining only
the leading terms, Eq$10) and(11) reduce now to

Doq 27+ Axq* —Kq* g+ A1q° g+ 1 f(q)¢q+lz<(q>=(0,)
15

wq—Kg*+3=(q) +Azq°=0. (16)

4 for

d+4-2I'-u>0
d+8-2T—pu (18)
for

q
<
'Z(Q)“{q d+4— 2T — u<0.

n

Going through the steps of a detailed analybke in the
appendix of Ref[16]) | find that aboved,=4+2p a weak-
coupling solution, described by the exponelits4+2p and
pu=4, is obtained. The lower critical dimension of the non-
linear MBE equation is thus 42p.

A strong-coupling solution can be obtained providedlthe
and u obeyd+4—T—u<0 andd+4—2I'— u<0. In that
case Eqgs(15) and(16) take the form

Do 2+ Aq*—KAQ' "+AA g "

222 A?

A d+s—2T—u _
+(2—7T)d 5 d F(I',u)=0,

(19

4 6 2)\2 A d+8-TI'—
Bqﬂ—Kq +A3q +W§q MG(F,,LL):O,
(20)

whereF(I', 1) is given by

>

t-(e—1)
th+|e—t]“+1

F(F,,u)=—fddt ©

x[|e—t]2(t- et T +t3e—t)-ge—t| "]

t-(e—1)]? .
+f ddt Lt 9)] tTe—t " (21)
t“+|e—t|#+1
andG(I', i) is given by
t-(e—t o
G(r,ﬂ)z—f ddt(—}[|é—t|2(t-é)t’r
th+|e—t|~
+t2(e—1)-ele—t) ). (22)

At the mere price of renormalizing some constants in both  From the conditions given above for a strong-coupling

equations, | am left with the integrals (q), 15(q), and
J=(q) that can be calculated explicitly for smafs since for
small|[]’s the power law form forg, and e, (or ¢q-1 and
wgq-1) can be usedEq. (4)]. In addition, the smali depen-

solution | findd+8—T"— u<4. Therefore, the last term in

Eq. (20) is dominant over the second term. Two possibilities
seem to arise now. Either the last term dominates the first
term in Eq.(20), which impliesG(I', ) =0, or these terms

dence of each of the integrals naturally depends on the corare proportional to the same power @fwhich implies the
vergence of the integrals without cutoff. So, to leading ordeiscaling relationd+8—1"—2u=0. The first possibility re-

inq,

quires d+8—T1"-2u<0, which is inconsistent with the
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whole idea of the expansion. The point is that higher order (d—2p+8)/3, d<4+2p
corrections have additional powers @ff "8~ ~2# so that in Z={4 d>442 (23
our case the requirememd+8—-I"-2u<0 means that ' p:
higher order terms are more violent than lower order ones (2p+4—d)/3, d<4+2p
(for smallg's). Such a situation either implies inconsistency a=r0, d>4+2p. (29)

of the expansion, or calls for summing up the whole series in
order to get a meaningful result. | assume that the expansion The final conclusion is that the second order self-
is consistent so that | am left with the second possibility, i.e.consistent expansion yields results that corroborate the re-
d+8—T—2ux=0. It is interesting to mention here that Jan- sults of one-loop DRG6,8]. As mentioned at the beginning
ssen’s result is also consistent with the assumption that thef the paper, the mode-coupling approach give similar equa-
requirement+8—T'— 24 <0 cannot be fulfilled. tions to those of SCE to second order—although a different

o _ . derivation and analysif.e., summation of the perturbation
As _for Eq.(1_9), ! ge_t(_i+ 8—-2I'—p<4-I', meaning that ._series while neglecting vertex renormalization vs a perturba-
the third term is negligible compared to the last. Here againg - theory for the Fokker-Planck formOn that basis, |

| am faced with two possibilities. Either the first term an_d theexpect the same results from a mode-coupling approach
last term are proportional to the same powegafesulting in - \when applied to this problem.

d+8—2I'—u=—2p, or the last term is dominant over the  To evaluate these results two facts have to be taken into
first term, in which cased+8—-2I'—u<—2p, and account. The first is that the SCE approach does not rely on
F(I',u)=0. A careful numerical calculation shows that the symmetry argumen4] that its possible weakness was
F(I',n)#0 for d=<4, so that the second possibility is ruled pointed out by Janssen. The second is that the SCE is known

out. Therefore, | am left with the first possibility, namely, in other casesi.e., KPZ, see Refd15-17) to yield results
with d+8—2T — u=—2p. that deviate from the results of the one-loop DRG and agree

| am led to the conclusion that the strong-coupling soly-much better with simulations. This suggests that the one-loop
tion isT'= (d+4p+8)/3 andu= (d— 2p + 8)/3. Taking into DRG results may be exact for the case of MBE. On the other
. i . : - ~hand, attempts to verify Janssen’s results via numerical simu-

account the condition for a strong-coupling solution givenIations indeed found such correctiofsd, 20, However, the

above, | find that such a solution is valid only fdxd, . .
- corrections were systematically much larger than those pre-
=4+2p. Ford>d, the exponents describing the system are

h h fthe I MBE ion. T q dicted by Janssen himself. For example,de 1 the devia-
the same as those of the linear equation, Fezd and  4joy 5 from the one-loop result differs from Janssen’s result

p=4. 1t should be mentioned that thedependent Strong- 4 order of magnitudécorrection of 5=0.0025 vs 8
coupling solutions exist as long as=(d—4)/2 (for lower =0.02. Since §=0.0025 is closer t06=0 than to &
values ofp we are actually always below the critical dimen- —q 02, this suggests that the deviation found in the numeri-
sion, and the critical exponents are consequently alWays ca| simulations might be related to some other factors.
=d and n=4). The translation of these results to the fre- Clearly further investigation is needed to decide this interest-
quently used notation reads ing issue.
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